Predicting Linearised Wind Resource Grids using Neural Networks
نویسندگان
چکیده
Modelling the flow over terrain is a key element of wind resource assessments within energy industry. Existing modelling methods range from fast, low fidelity analytical models to time-consuming and computationally expensive high-fidelity Computational Fluid Dynamics (CFD) software. In this work, Grid-Kernel Neural Network approach has been developed used create surrogate emulate WAsP software, by calculating changes in speed direction due orography roughness terrain. This data-driven proven be successful predicting orographic at multiple heights above ground. At 100 m ground, mean absolute error values were 1.6% speedup 0.4° for changes, respectively. Although model linear, potential solver, findings here can counted as first step towards creating fully CFD model.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Predicting financial statement fraud using fuzzy neural networks
Fraud is a common phenomenon in business, and according to Section 24 of the Iranian Auditing Standards, it is the fraudulent act of one or more managers, employees, or third parties to derive unfair advantage and any intentional or unlawful conduct. Financial statements are a means of transmitting confidential management information about the<br ...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کاملResource arbitration using Neural networks
In this paper we present the functional design of a resource arbiter based on Neural Networks. The decision for the access of the shared resource is based on a multilevel hierarchical Neural Network. The arbitration is based on a winner-take-all scheme and the priority measures are distributed in the neural network’s adaptive weights. The system is designed to learn externally from its history ...
متن کاملApplication of Artificial Neural Networks for Predicting Generated Wind Power
This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its nonexhaustible nature. The power generation by elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Wind Engineering and Industrial Aerodynamics
سال: 2022
ISSN: ['0167-6105', '1872-8197']
DOI: https://doi.org/10.1016/j.jweia.2022.105123